array(35) { ["id"]=> string(4) "1621" ["type"]=> string(6) "course" ["title"]=> string(71) "基于logit随机块模型的非加权网络异常监测的案例分析" ["subtitle"]=> string(0) "" ["creator"]=> array(6) { ["id"]=> string(1) "8" ["nickname"]=> string(7) "mingzhu" ["title"]=> string(6) "教师" ["uuid"]=> string(40) "66f930e6f2d349b45f48f24e125e05d3a92fb8d1" ["destroyed"]=> string(1) "0" ["avatar"]=> array(3) { ["small"]=> string(76) "http://www.chinadatacase.com/files/default/2021/11-26/09105602405b816729.png" ["middle"]=> string(76) "http://www.chinadatacase.com/files/default/2021/11-26/091056023132077454.png" ["large"]=> string(76) "http://www.chinadatacase.com/files/default/2021/11-26/0910560220f8152273.png" } } ["showable"]=> string(1) "1" ["buyable"]=> string(1) "1" ["summary"]=> string(712) "
复杂网络在生产和生活中普遍存在,包括传感器网络、社交网络、生物网络等。复杂网络的监测有助于及时发现异常事件,减少经济损失。本案例针对复杂网络节点之间的交互行为,提出考虑节点异质性和社区属性的logit随机块模型,其中每对节点之间交互的存在与否被视为伯努利变量。本案例将所提出的模型表示为矩阵形式,简化了参数估计和监测统计量的推导。最后本案例基于广义似然比检验建立了一种新的控制图,与现有的方法相比,本案例的算法能够更快地检测出复杂网络中的异常,更有助于减少异常事件带来的损失。
" ["minPrice"]=> string(4) "0.00" ["maxPrice"]=> string(4) "0.00" ["discountId"]=> string(1) "0" ["images"]=> array(3) { ["large"]=> string(75) "http://www.chinadatacase.com/files/course/2023/09-15/00220807ab61675175.png" ["middle"]=> string(75) "http://www.chinadatacase.com/files/course/2023/09-15/00220807b49e068174.png" ["small"]=> string(75) "http://www.chinadatacase.com/files/course/2023/09-15/00220807baf8951049.png" } ["ratingNum"]=> string(1) "0" ["rating"]=> string(1) "0" ["hitNum"]=> string(3) "402" ["hotSeq"]=> string(1) "0" ["maxPriceObj"]=> array(2) { ["currency"]=> string(3) "RMB" ["amount"]=> string(4) "0.00" } ["minPriceObj"]=> array(2) { ["currency"]=> string(3) "RMB" ["amount"]=> string(4) "0.00" } ["minDisplayPrice"]=> string(4) "0.00" ["maxDisplayPrice"]=> string(4) "0.00" ["minDisplayPriceObj"]=> array(2) { ["currency"]=> string(3) "RMB" ["amount"]=> string(4) "0.00" } ["maxDisplayPriceObj"]=> array(2) { ["currency"]=> string(3) "RMB" ["amount"]=> string(4) "0.00" } ["canManage"]=> bool(false) ["peopleShowNum"]=> string(3) "143" ["isMember"]=> bool(false) ["status"]=> string(9) "published" ["orgId"]=> string(1) "1" ["orgCode"]=> string(2) "1." ["recommendWeight"]=> string(1) "0" ["recommendedTime"]=> string(1) "0" ["createdTime"]=> string(25) "2023-09-14T23:03:26+08:00" ["updatedTime"]=> string(25) "2026-02-17T01:22:13+08:00" ["product"]=> array(7) { ["id"]=> string(4) "1621" ["targetType"]=> string(6) "course" ["title"]=> string(71) "基于logit随机块模型的非加权网络异常监测的案例分析" ["owner"]=> string(1) "8" ["createdTime"]=> string(10) "1694703806" ["updatedTime"]=> string(10) "1694708529" ["target"]=> array(17) { ["id"]=> string(4) "1634" ["type"]=> string(6) "normal" ["title"]=> string(71) "基于logit随机块模型的非加权网络异常监测的案例分析" ["subtitle"]=> string(0) "" ["summary"]=> string(712) "复杂网络在生产和生活中普遍存在,包括传感器网络、社交网络、生物网络等。复杂网络的监测有助于及时发现异常事件,减少经济损失。本案例针对复杂网络节点之间的交互行为,提出考虑节点异质性和社区属性的logit随机块模型,其中每对节点之间交互的存在与否被视为伯努利变量。本案例将所提出的模型表示为矩阵形式,简化了参数估计和监测统计量的推导。最后本案例基于广义似然比检验建立了一种新的控制图,与现有的方法相比,本案例的算法能够更快地检测出复杂网络中的异常,更有助于减少异常事件带来的损失。
" ["cover"]=> array(3) { ["large"]=> string(75) "http://www.chinadatacase.com/files/course/2023/09-15/00220807ab61675175.png" ["middle"]=> string(75) "http://www.chinadatacase.com/files/course/2023/09-15/00220807b49e068174.png" ["small"]=> string(75) "http://www.chinadatacase.com/files/course/2023/09-15/00220807baf8951049.png" } ["status"]=> string(9) "published" ["studentNum"]=> string(3) "143" ["discountType"]=> string(8) "discount" ["discount"]=> string(2) "10" ["minCoursePrice"]=> string(4) "0.00" ["maxCoursePrice"]=> string(4) "0.00" ["defaultCourseId"]=> string(4) "1646" ["productId"]=> string(4) "1621" ["goodsId"]=> string(4) "1621" ["minCoursePrice2"]=> array(2) { ["currency"]=> string(3) "RMB" ["amount"]=> string(4) "0.00" } ["maxCoursePrice2"]=> array(2) { ["currency"]=> string(3) "RMB" ["amount"]=> string(4) "0.00" } } } ["extensions"]=> array(3) { [0]=> string(8) "teachers" [1]=> string(14) "recommendGoods" [2]=> string(10) "isFavorite" } ["specs"]=> array(1) { [0]=> array(26) { ["id"]=> string(4) "1633" ["goodsId"]=> string(4) "1621" ["targetId"]=> string(4) "1646" ["title"]=> string(0) "" ["seq"]=> string(1) "1" ["status"]=> string(9) "published" ["price"]=> string(4) "0.00" ["coinPrice"]=> string(4) "0.00" ["usageMode"]=> string(7) "forever" ["usageDays"]=> string(1) "0" ["usageStartTime"]=> string(1) "0" ["usageEndTime"]=> string(1) "0" ["buyableStartTime"]=> string(1) "0" ["buyableEndTime"]=> string(1) "0" ["buyableMode"]=> NULL ["buyable"]=> string(1) "1" ["maxJoinNum"]=> string(1) "0" ["services"]=> array(0) { } ["priceObj"]=> array(2) { ["currency"]=> string(3) "RMB" ["amount"]=> string(4) "0.00" } ["displayPrice"]=> string(4) "0.00" ["displayPriceObj"]=> array(2) { ["currency"]=> string(3) "RMB" ["amount"]=> string(4) "0.00" } ["isMember"]=> bool(false) ["access"]=> array(2) { ["code"]=> string(14) "user.not_login" ["msg"]=> string(15) "用户未登录" } ["hasCertificate"]=> bool(false) ["learnUrl"]=> string(43) "http://www.chinadatacase.com/my/course/1646" ["teachers"]=> array(1) { [0]=> array(6) { ["id"]=> string(1) "8" ["nickname"]=> string(7) "mingzhu" ["title"]=> string(6) "教师" ["uuid"]=> string(40) "66f930e6f2d349b45f48f24e125e05d3a92fb8d1" ["destroyed"]=> string(1) "0" ["avatar"]=> array(3) { ["small"]=> string(76) "http://www.chinadatacase.com/files/default/2021/11-26/09105602405b816729.png" ["middle"]=> string(76) "http://www.chinadatacase.com/files/default/2021/11-26/091056023132077454.png" ["large"]=> string(76) "http://www.chinadatacase.com/files/default/2021/11-26/0910560220f8152273.png" } } } } } }