array(35) { ["id"]=> string(4) "1817" ["type"]=> string(6) "course" ["title"]=> string(53) "基于lightGBM模型的用户购买行为预测研究" ["subtitle"]=> string(0) "" ["creator"]=> array(6) { ["id"]=> string(1) "8" ["nickname"]=> string(7) "mingzhu" ["title"]=> string(6) "教师" ["uuid"]=> string(40) "66f930e6f2d349b45f48f24e125e05d3a92fb8d1" ["destroyed"]=> string(1) "0" ["avatar"]=> array(3) { ["small"]=> string(76) "http://www.chinadatacase.com/files/default/2021/11-26/09105602405b816729.png" ["middle"]=> string(76) "http://www.chinadatacase.com/files/default/2021/11-26/091056023132077454.png" ["large"]=> string(76) "http://www.chinadatacase.com/files/default/2021/11-26/0910560220f8152273.png" } } ["showable"]=> string(1) "1" ["buyable"]=> string(1) "1" ["summary"]=> string(842) "
本案例为《金融数据挖掘与分析》课程中的实验教学案例。通过实验分析和案例讨论研究电商平台用户购买行为预测问题,构建不同模型及其融合模型以选择最有效的方法对电商用户的购买行为进行预测。具体法包括:构建用户特征群和商品特征群,并通过相关性分析进行特征筛选,同时通过对生成期时间跨度进行控制构造相应的数据集;通过结合不同模型的预测结果与实际情况构造了模型评价指标。基于实验结果,解释分析,最后确定用户是否购买的最佳预测方案。此过程中,通过不断改写代码,完善实验结果,将理论与实际相结合,为企业提供一个完善、全面的用户行为预测方案,达到优化客户管理和库存管理的目标。
" ["minPrice"]=> string(4) "0.00" ["maxPrice"]=> string(4) "0.00" ["discountId"]=> string(1) "0" ["images"]=> array(3) { ["large"]=> string(76) "http://www.chinadatacase.com/files/course/2023/10-20/1356524682c7470443.jpeg" ["middle"]=> string(76) "http://www.chinadatacase.com/files/course/2023/10-20/135652468cbe255161.jpeg" ["small"]=> string(76) "http://www.chinadatacase.com/files/course/2023/10-20/1356524692e8013910.jpeg" } ["ratingNum"]=> string(1) "0" ["rating"]=> string(1) "0" ["hitNum"]=> string(3) "431" ["hotSeq"]=> string(1) "0" ["maxPriceObj"]=> array(2) { ["currency"]=> string(3) "RMB" ["amount"]=> string(4) "0.00" } ["minPriceObj"]=> array(2) { ["currency"]=> string(3) "RMB" ["amount"]=> string(4) "0.00" } ["minDisplayPrice"]=> string(4) "0.00" ["maxDisplayPrice"]=> string(4) "0.00" ["minDisplayPriceObj"]=> array(2) { ["currency"]=> string(3) "RMB" ["amount"]=> string(4) "0.00" } ["maxDisplayPriceObj"]=> array(2) { ["currency"]=> string(3) "RMB" ["amount"]=> string(4) "0.00" } ["canManage"]=> bool(false) ["peopleShowNum"]=> string(3) "108" ["isMember"]=> bool(false) ["status"]=> string(9) "published" ["orgId"]=> string(1) "1" ["orgCode"]=> string(2) "1." ["recommendWeight"]=> string(1) "0" ["recommendedTime"]=> string(1) "0" ["createdTime"]=> string(25) "2023-10-11T14:56:01+08:00" ["updatedTime"]=> string(25) "2025-12-12T04:37:26+08:00" ["product"]=> array(7) { ["id"]=> string(4) "1817" ["targetType"]=> string(6) "course" ["title"]=> string(53) "基于lightGBM模型的用户购买行为预测研究" ["owner"]=> string(1) "8" ["createdTime"]=> string(10) "1697007361" ["updatedTime"]=> string(10) "1698666659" ["target"]=> array(17) { ["id"]=> string(4) "1917" ["type"]=> string(6) "normal" ["title"]=> string(53) "基于lightGBM模型的用户购买行为预测研究" ["subtitle"]=> string(0) "" ["summary"]=> string(842) "本案例为《金融数据挖掘与分析》课程中的实验教学案例。通过实验分析和案例讨论研究电商平台用户购买行为预测问题,构建不同模型及其融合模型以选择最有效的方法对电商用户的购买行为进行预测。具体法包括:构建用户特征群和商品特征群,并通过相关性分析进行特征筛选,同时通过对生成期时间跨度进行控制构造相应的数据集;通过结合不同模型的预测结果与实际情况构造了模型评价指标。基于实验结果,解释分析,最后确定用户是否购买的最佳预测方案。此过程中,通过不断改写代码,完善实验结果,将理论与实际相结合,为企业提供一个完善、全面的用户行为预测方案,达到优化客户管理和库存管理的目标。
" ["cover"]=> array(3) { ["large"]=> string(76) "http://www.chinadatacase.com/files/course/2023/10-20/1356524682c7470443.jpeg" ["middle"]=> string(76) "http://www.chinadatacase.com/files/course/2023/10-20/135652468cbe255161.jpeg" ["small"]=> string(76) "http://www.chinadatacase.com/files/course/2023/10-20/1356524692e8013910.jpeg" } ["status"]=> string(9) "published" ["studentNum"]=> string(3) "108" ["discountType"]=> string(8) "discount" ["discount"]=> string(2) "10" ["minCoursePrice"]=> string(4) "0.00" ["maxCoursePrice"]=> string(4) "0.00" ["defaultCourseId"]=> string(4) "1935" ["productId"]=> string(4) "1817" ["goodsId"]=> string(4) "1817" ["minCoursePrice2"]=> array(2) { ["currency"]=> string(3) "RMB" ["amount"]=> string(4) "0.00" } ["maxCoursePrice2"]=> array(2) { ["currency"]=> string(3) "RMB" ["amount"]=> string(4) "0.00" } } } ["extensions"]=> array(3) { [0]=> string(8) "teachers" [1]=> string(14) "recommendGoods" [2]=> string(10) "isFavorite" } ["specs"]=> array(1) { [0]=> array(26) { ["id"]=> string(4) "1835" ["goodsId"]=> string(4) "1817" ["targetId"]=> string(4) "1935" ["title"]=> string(0) "" ["seq"]=> string(1) "1" ["status"]=> string(9) "published" ["price"]=> string(4) "0.00" ["coinPrice"]=> string(4) "0.00" ["usageMode"]=> string(7) "forever" ["usageDays"]=> string(1) "0" ["usageStartTime"]=> string(1) "0" ["usageEndTime"]=> string(1) "0" ["buyableStartTime"]=> string(1) "0" ["buyableEndTime"]=> string(1) "0" ["buyableMode"]=> NULL ["buyable"]=> string(1) "1" ["maxJoinNum"]=> string(1) "0" ["services"]=> array(0) { } ["priceObj"]=> array(2) { ["currency"]=> string(3) "RMB" ["amount"]=> string(4) "0.00" } ["displayPrice"]=> string(4) "0.00" ["displayPriceObj"]=> array(2) { ["currency"]=> string(3) "RMB" ["amount"]=> string(4) "0.00" } ["isMember"]=> bool(false) ["access"]=> array(2) { ["code"]=> string(14) "user.not_login" ["msg"]=> string(15) "用户未登录" } ["hasCertificate"]=> bool(false) ["learnUrl"]=> string(43) "http://www.chinadatacase.com/my/course/1935" ["teachers"]=> array(1) { [0]=> array(6) { ["id"]=> string(1) "8" ["nickname"]=> string(7) "mingzhu" ["title"]=> string(6) "教师" ["uuid"]=> string(40) "66f930e6f2d349b45f48f24e125e05d3a92fb8d1" ["destroyed"]=> string(1) "0" ["avatar"]=> array(3) { ["small"]=> string(76) "http://www.chinadatacase.com/files/default/2021/11-26/09105602405b816729.png" ["middle"]=> string(76) "http://www.chinadatacase.com/files/default/2021/11-26/091056023132077454.png" ["large"]=> string(76) "http://www.chinadatacase.com/files/default/2021/11-26/0910560220f8152273.png" } } } } } }