array(35) { ["id"]=> string(4) "1839" ["type"]=> string(6) "course" ["title"]=> string(57) "中国农业碳排放的达峰分析与动态演进案例" ["subtitle"]=> string(0) "" ["creator"]=> array(6) { ["id"]=> string(1) "8" ["nickname"]=> string(7) "mingzhu" ["title"]=> string(6) "教师" ["uuid"]=> string(40) "66f930e6f2d349b45f48f24e125e05d3a92fb8d1" ["destroyed"]=> string(1) "0" ["avatar"]=> array(3) { ["small"]=> string(76) "http://www.chinadatacase.com/files/default/2021/11-26/09105602405b816729.png" ["middle"]=> string(76) "http://www.chinadatacase.com/files/default/2021/11-26/091056023132077454.png" ["large"]=> string(76) "http://www.chinadatacase.com/files/default/2021/11-26/0910560220f8152273.png" } } ["showable"]=> string(1) "1" ["buyable"]=> string(1) "1" ["summary"]=> string(813) "
利用中国农业生产数据计算了中国大陆1996-2020年间的农业碳排放量,绘制了中国农业碳排放31个省份的环境库兹涅茨曲线和东中西部的核密度曲线,研究发现,中国农业碳排放在研究期内呈现以下特征:第一,全国与河北、辽宁、山东、河南,湖北、重庆和西藏这7个省份的农业碳排放强度与农业经济强度呈现倒 U型EKC关系,说明随着农业经济发展程度的提高,农业碳排放逐渐降低。第二,河北、辽宁、山东、河南,湖北、重庆、西藏、广东、甘肃、天津,江苏、江西、四川、黑龙江、浙江、福建、广西、新疆、湖南、海南、安徽和云南这22个省份已实现达峰,涵盖东中西部多数农业发达与不发达的省份。
" ["minPrice"]=> string(4) "0.00" ["maxPrice"]=> string(4) "0.00" ["discountId"]=> string(1) "0" ["images"]=> array(3) { ["large"]=> string(76) "http://www.chinadatacase.com/files/course/2025/03-24/104027b72c13523820.jpeg" ["middle"]=> string(76) "http://www.chinadatacase.com/files/course/2025/03-24/104027b73a22291722.jpeg" ["small"]=> string(76) "http://www.chinadatacase.com/files/course/2025/03-24/104027b74129755804.jpeg" } ["ratingNum"]=> string(1) "0" ["rating"]=> string(1) "0" ["hitNum"]=> string(3) "447" ["hotSeq"]=> string(1) "0" ["maxPriceObj"]=> array(2) { ["currency"]=> string(3) "RMB" ["amount"]=> string(4) "0.00" } ["minPriceObj"]=> array(2) { ["currency"]=> string(3) "RMB" ["amount"]=> string(4) "0.00" } ["minDisplayPrice"]=> string(4) "0.00" ["maxDisplayPrice"]=> string(4) "0.00" ["minDisplayPriceObj"]=> array(2) { ["currency"]=> string(3) "RMB" ["amount"]=> string(4) "0.00" } ["maxDisplayPriceObj"]=> array(2) { ["currency"]=> string(3) "RMB" ["amount"]=> string(4) "0.00" } ["canManage"]=> bool(false) ["peopleShowNum"]=> string(3) "149" ["isMember"]=> bool(false) ["status"]=> string(9) "published" ["orgId"]=> string(1) "1" ["orgCode"]=> string(2) "1." ["recommendWeight"]=> string(1) "0" ["recommendedTime"]=> string(1) "0" ["createdTime"]=> string(25) "2023-10-18T17:45:04+08:00" ["updatedTime"]=> string(25) "2025-12-13T14:58:22+08:00" ["product"]=> array(7) { ["id"]=> string(4) "1839" ["targetType"]=> string(6) "course" ["title"]=> string(57) "中国农业碳排放的达峰分析与动态演进案例" ["owner"]=> string(1) "8" ["createdTime"]=> string(10) "1697622304" ["updatedTime"]=> string(10) "1742784037" ["target"]=> array(17) { ["id"]=> string(4) "1939" ["type"]=> string(6) "normal" ["title"]=> string(57) "中国农业碳排放的达峰分析与动态演进案例" ["subtitle"]=> string(0) "" ["summary"]=> string(813) "利用中国农业生产数据计算了中国大陆1996-2020年间的农业碳排放量,绘制了中国农业碳排放31个省份的环境库兹涅茨曲线和东中西部的核密度曲线,研究发现,中国农业碳排放在研究期内呈现以下特征:第一,全国与河北、辽宁、山东、河南,湖北、重庆和西藏这7个省份的农业碳排放强度与农业经济强度呈现倒 U型EKC关系,说明随着农业经济发展程度的提高,农业碳排放逐渐降低。第二,河北、辽宁、山东、河南,湖北、重庆、西藏、广东、甘肃、天津,江苏、江西、四川、黑龙江、浙江、福建、广西、新疆、湖南、海南、安徽和云南这22个省份已实现达峰,涵盖东中西部多数农业发达与不发达的省份。
" ["cover"]=> array(3) { ["large"]=> string(76) "http://www.chinadatacase.com/files/course/2025/03-24/104027b72c13523820.jpeg" ["middle"]=> string(76) "http://www.chinadatacase.com/files/course/2025/03-24/104027b73a22291722.jpeg" ["small"]=> string(76) "http://www.chinadatacase.com/files/course/2025/03-24/104027b74129755804.jpeg" } ["status"]=> string(9) "published" ["studentNum"]=> string(3) "149" ["discountType"]=> string(8) "discount" ["discount"]=> string(2) "10" ["minCoursePrice"]=> string(4) "0.00" ["maxCoursePrice"]=> string(4) "0.00" ["defaultCourseId"]=> string(4) "1962" ["productId"]=> string(4) "1839" ["goodsId"]=> string(4) "1839" ["minCoursePrice2"]=> array(2) { ["currency"]=> string(3) "RMB" ["amount"]=> string(4) "0.00" } ["maxCoursePrice2"]=> array(2) { ["currency"]=> string(3) "RMB" ["amount"]=> string(4) "0.00" } } } ["extensions"]=> array(3) { [0]=> string(8) "teachers" [1]=> string(14) "recommendGoods" [2]=> string(10) "isFavorite" } ["specs"]=> array(1) { [0]=> array(26) { ["id"]=> string(4) "1862" ["goodsId"]=> string(4) "1839" ["targetId"]=> string(4) "1962" ["title"]=> string(0) "" ["seq"]=> string(1) "1" ["status"]=> string(9) "published" ["price"]=> string(4) "0.00" ["coinPrice"]=> string(4) "0.00" ["usageMode"]=> string(7) "forever" ["usageDays"]=> string(1) "0" ["usageStartTime"]=> string(1) "0" ["usageEndTime"]=> string(1) "0" ["buyableStartTime"]=> string(1) "0" ["buyableEndTime"]=> string(1) "0" ["buyableMode"]=> NULL ["buyable"]=> string(1) "1" ["maxJoinNum"]=> string(1) "0" ["services"]=> array(0) { } ["priceObj"]=> array(2) { ["currency"]=> string(3) "RMB" ["amount"]=> string(4) "0.00" } ["displayPrice"]=> string(4) "0.00" ["displayPriceObj"]=> array(2) { ["currency"]=> string(3) "RMB" ["amount"]=> string(4) "0.00" } ["isMember"]=> bool(false) ["access"]=> array(2) { ["code"]=> string(14) "user.not_login" ["msg"]=> string(15) "用户未登录" } ["hasCertificate"]=> bool(false) ["learnUrl"]=> string(43) "http://www.chinadatacase.com/my/course/1962" ["teachers"]=> array(1) { [0]=> array(6) { ["id"]=> string(1) "8" ["nickname"]=> string(7) "mingzhu" ["title"]=> string(6) "教师" ["uuid"]=> string(40) "66f930e6f2d349b45f48f24e125e05d3a92fb8d1" ["destroyed"]=> string(1) "0" ["avatar"]=> array(3) { ["small"]=> string(76) "http://www.chinadatacase.com/files/default/2021/11-26/09105602405b816729.png" ["middle"]=> string(76) "http://www.chinadatacase.com/files/default/2021/11-26/091056023132077454.png" ["large"]=> string(76) "http://www.chinadatacase.com/files/default/2021/11-26/0910560220f8152273.png" } } } } } }