array(35) { ["id"]=> string(4) "2072" ["type"]=> string(6) "course" ["title"]=> string(45) "DCC-Garch-BL模型在基金投资中的应用" ["subtitle"]=> string(0) "" ["creator"]=> array(6) { ["id"]=> string(1) "3" ["nickname"]=> string(5) "admin" ["title"]=> string(1) " " ["uuid"]=> string(40) "634d3b58166bfafd4069119be97ee6bfee064c52" ["destroyed"]=> string(1) "0" ["avatar"]=> array(3) { ["small"]=> string(75) "http://www.chinadatacase.com/files/user/otherform/1711697442_1722994936.png" ["middle"]=> string(75) "http://www.chinadatacase.com/files/user/otherform/1711697442_1722994936.png" ["large"]=> string(75) "http://www.chinadatacase.com/files/user/otherform/1711697442_1722994936.png" } } ["showable"]=> string(1) "1" ["buyable"]=> string(1) "1" ["summary"]=> string(871) "
本案例深入探讨了Black-Litterman(BL)模型的核心理念及其在现代基金投资中的实际应用。自Black和Litterman于1992年提出该模型以来,它因能够将投资者的主观观点与资产的历史收益率巧妙结合而受到广泛关注。本案例旨在通过对传统资产配置模型的回顾和对BL模型原理的详细解析,展示BL模型如何克服均值方差模型的一些固有弊端,如对历史数据的过度依赖和对参数输入的高敏感性。此外,本案例还将引入时间序列分析中的DCC-Garch模型,以预测基金指数的收益率,并改进BL模型中的投资者主观观点,从而使其更加科学化。通过实证研究和将改进后的BL模型与传统的MV模型进行比较,本案例将展示GARCH–Black-Litterman模型在基金投资中的优越性和实用价值。
" ["minPrice"]=> string(4) "0.00" ["maxPrice"]=> string(4) "0.00" ["discountId"]=> string(1) "0" ["images"]=> array(3) { ["large"]=> string(76) "http://www.chinadatacase.com/files/course/2025/03-20/103140c89e5d876054.jpeg" ["middle"]=> string(76) "http://www.chinadatacase.com/files/course/2025/03-20/103140c8a9e5670517.jpeg" ["small"]=> string(76) "http://www.chinadatacase.com/files/course/2025/03-20/103140c8b07b381758.jpeg" } ["ratingNum"]=> string(1) "0" ["rating"]=> string(1) "0" ["hitNum"]=> string(3) "108" ["hotSeq"]=> string(1) "0" ["maxPriceObj"]=> array(2) { ["currency"]=> string(3) "RMB" ["amount"]=> string(4) "0.00" } ["minPriceObj"]=> array(2) { ["currency"]=> string(3) "RMB" ["amount"]=> string(4) "0.00" } ["minDisplayPrice"]=> string(4) "0.00" ["maxDisplayPrice"]=> string(4) "0.00" ["minDisplayPriceObj"]=> array(2) { ["currency"]=> string(3) "RMB" ["amount"]=> string(4) "0.00" } ["maxDisplayPriceObj"]=> array(2) { ["currency"]=> string(3) "RMB" ["amount"]=> string(4) "0.00" } ["canManage"]=> bool(false) ["peopleShowNum"]=> string(3) "113" ["isMember"]=> bool(false) ["status"]=> string(7) "created" ["orgId"]=> string(1) "1" ["orgCode"]=> string(2) "1." ["recommendWeight"]=> string(1) "0" ["recommendedTime"]=> string(1) "0" ["createdTime"]=> string(25) "2025-01-13T17:02:25+08:00" ["updatedTime"]=> string(25) "2025-12-09T16:27:47+08:00" ["product"]=> array(7) { ["id"]=> string(4) "2073" ["targetType"]=> string(6) "course" ["title"]=> string(45) "DCC-Garch-BL模型在基金投资中的应用" ["owner"]=> string(1) "3" ["createdTime"]=> string(10) "1736758945" ["updatedTime"]=> string(10) "1742437927" ["target"]=> array(17) { ["id"]=> string(4) "2194" ["type"]=> string(6) "normal" ["title"]=> string(45) "DCC-Garch-BL模型在基金投资中的应用" ["subtitle"]=> string(0) "" ["summary"]=> string(871) "本案例深入探讨了Black-Litterman(BL)模型的核心理念及其在现代基金投资中的实际应用。自Black和Litterman于1992年提出该模型以来,它因能够将投资者的主观观点与资产的历史收益率巧妙结合而受到广泛关注。本案例旨在通过对传统资产配置模型的回顾和对BL模型原理的详细解析,展示BL模型如何克服均值方差模型的一些固有弊端,如对历史数据的过度依赖和对参数输入的高敏感性。此外,本案例还将引入时间序列分析中的DCC-Garch模型,以预测基金指数的收益率,并改进BL模型中的投资者主观观点,从而使其更加科学化。通过实证研究和将改进后的BL模型与传统的MV模型进行比较,本案例将展示GARCH–Black-Litterman模型在基金投资中的优越性和实用价值。
" ["cover"]=> array(3) { ["large"]=> string(76) "http://www.chinadatacase.com/files/course/2025/03-20/103140c89e5d876054.jpeg" ["middle"]=> string(76) "http://www.chinadatacase.com/files/course/2025/03-20/103140c8a9e5670517.jpeg" ["small"]=> string(76) "http://www.chinadatacase.com/files/course/2025/03-20/103140c8b07b381758.jpeg" } ["status"]=> string(9) "published" ["studentNum"]=> string(3) "113" ["discountType"]=> string(8) "discount" ["discount"]=> string(2) "10" ["minCoursePrice"]=> string(4) "0.00" ["maxCoursePrice"]=> string(4) "0.00" ["defaultCourseId"]=> string(4) "2200" ["productId"]=> string(4) "2073" ["goodsId"]=> string(4) "2072" ["minCoursePrice2"]=> array(2) { ["currency"]=> string(3) "RMB" ["amount"]=> string(4) "0.00" } ["maxCoursePrice2"]=> array(2) { ["currency"]=> string(3) "RMB" ["amount"]=> string(4) "0.00" } } } ["extensions"]=> array(3) { [0]=> string(8) "teachers" [1]=> string(14) "recommendGoods" [2]=> string(10) "isFavorite" } ["specs"]=> array(1) { [0]=> array(26) { ["id"]=> string(4) "2099" ["goodsId"]=> string(4) "2072" ["targetId"]=> string(4) "2200" ["title"]=> string(0) "" ["seq"]=> string(1) "1" ["status"]=> string(9) "published" ["price"]=> string(4) "0.00" ["coinPrice"]=> string(4) "0.00" ["usageMode"]=> string(7) "forever" ["usageDays"]=> string(1) "0" ["usageStartTime"]=> string(1) "0" ["usageEndTime"]=> string(1) "0" ["buyableStartTime"]=> string(1) "0" ["buyableEndTime"]=> string(1) "0" ["buyableMode"]=> NULL ["buyable"]=> string(1) "1" ["maxJoinNum"]=> string(1) "0" ["services"]=> array(0) { } ["priceObj"]=> array(2) { ["currency"]=> string(3) "RMB" ["amount"]=> string(4) "0.00" } ["displayPrice"]=> string(4) "0.00" ["displayPriceObj"]=> array(2) { ["currency"]=> string(3) "RMB" ["amount"]=> string(4) "0.00" } ["isMember"]=> bool(false) ["access"]=> array(2) { ["code"]=> string(14) "user.not_login" ["msg"]=> string(15) "用户未登录" } ["hasCertificate"]=> bool(false) ["learnUrl"]=> string(43) "http://www.chinadatacase.com/my/course/2200" ["teachers"]=> array(1) { [0]=> array(6) { ["id"]=> string(1) "3" ["nickname"]=> string(5) "admin" ["title"]=> string(1) " " ["uuid"]=> string(40) "634d3b58166bfafd4069119be97ee6bfee064c52" ["destroyed"]=> string(1) "0" ["avatar"]=> array(3) { ["small"]=> string(75) "http://www.chinadatacase.com/files/user/otherform/1711697442_1722994936.png" ["middle"]=> string(75) "http://www.chinadatacase.com/files/user/otherform/1711697442_1722994936.png" ["large"]=> string(75) "http://www.chinadatacase.com/files/user/otherform/1711697442_1722994936.png" } } } } } }