array(35) { ["id"]=> string(4) "2076" ["type"]=> string(6) "course" ["title"]=> string(77) "基于随机森林与LightGBM模型的移动通信客户满意度预测研究" ["subtitle"]=> string(0) "" ["creator"]=> array(6) { ["id"]=> string(1) "3" ["nickname"]=> string(5) "admin" ["title"]=> string(1) " " ["uuid"]=> string(40) "634d3b58166bfafd4069119be97ee6bfee064c52" ["destroyed"]=> string(1) "0" ["avatar"]=> array(3) { ["small"]=> string(75) "http://www.chinadatacase.com/files/user/otherform/1711697442_1722994936.png" ["middle"]=> string(75) "http://www.chinadatacase.com/files/user/otherform/1711697442_1722994936.png" ["large"]=> string(75) "http://www.chinadatacase.com/files/user/otherform/1711697442_1722994936.png" } } ["showable"]=> string(1) "1" ["buyable"]=> string(1) "1" ["summary"]=> string(760) "
在快速发展的移动通信行业,客户满意度的提升已成为各大运营商竞争的关键。本文基于随机森林和LightGBM模型,深入分析了影响客户语音业务和上网业务满意度的主要因素,并进行了量化预测。通过对数据集的预处理、特征选择和模型构建,研究发现“前3月MOU”、“当月MOU”、“终端品牌类型”等因素对客户满意度具有显著影响。针对语音业务,随机森林模型的预测准确率达到91%,而在上网业务中,LightGBM模型的预测准确率为88%。本研究不仅为移动通信运营商提供了有效的客户满意度提升策略,也为后续的业务决策提供了数据支持,具有重要的理论和实践意义。
" ["minPrice"]=> string(4) "0.00" ["maxPrice"]=> string(4) "0.00" ["discountId"]=> string(1) "0" ["images"]=> array(3) { ["large"]=> string(75) "http://www.chinadatacase.com/files/course/2025/03-20/1056502d6813603518.jpg" ["middle"]=> string(75) "http://www.chinadatacase.com/files/course/2025/03-20/1056502d7b58266345.jpg" ["small"]=> string(75) "http://www.chinadatacase.com/files/course/2025/03-20/1056502d816f405136.jpg" } ["ratingNum"]=> string(1) "0" ["rating"]=> string(1) "0" ["hitNum"]=> string(3) "100" ["hotSeq"]=> string(1) "0" ["maxPriceObj"]=> array(2) { ["currency"]=> string(3) "RMB" ["amount"]=> string(4) "0.00" } ["minPriceObj"]=> array(2) { ["currency"]=> string(3) "RMB" ["amount"]=> string(4) "0.00" } ["minDisplayPrice"]=> string(4) "0.00" ["maxDisplayPrice"]=> string(4) "0.00" ["minDisplayPriceObj"]=> array(2) { ["currency"]=> string(3) "RMB" ["amount"]=> string(4) "0.00" } ["maxDisplayPriceObj"]=> array(2) { ["currency"]=> string(3) "RMB" ["amount"]=> string(4) "0.00" } ["canManage"]=> bool(false) ["peopleShowNum"]=> string(3) "116" ["isMember"]=> bool(false) ["status"]=> string(7) "created" ["orgId"]=> string(1) "1" ["orgCode"]=> string(2) "1." ["recommendWeight"]=> string(1) "0" ["recommendedTime"]=> string(1) "0" ["createdTime"]=> string(25) "2025-01-13T17:04:06+08:00" ["updatedTime"]=> string(25) "2025-12-12T18:37:56+08:00" ["product"]=> array(7) { ["id"]=> string(4) "2077" ["targetType"]=> string(6) "course" ["title"]=> string(77) "基于随机森林与LightGBM模型的移动通信客户满意度预测研究" ["owner"]=> string(1) "3" ["createdTime"]=> string(10) "1736759046" ["updatedTime"]=> string(10) "1742439412" ["target"]=> array(17) { ["id"]=> string(4) "2198" ["type"]=> string(6) "normal" ["title"]=> string(77) "基于随机森林与LightGBM模型的移动通信客户满意度预测研究" ["subtitle"]=> string(0) "" ["summary"]=> string(760) "在快速发展的移动通信行业,客户满意度的提升已成为各大运营商竞争的关键。本文基于随机森林和LightGBM模型,深入分析了影响客户语音业务和上网业务满意度的主要因素,并进行了量化预测。通过对数据集的预处理、特征选择和模型构建,研究发现“前3月MOU”、“当月MOU”、“终端品牌类型”等因素对客户满意度具有显著影响。针对语音业务,随机森林模型的预测准确率达到91%,而在上网业务中,LightGBM模型的预测准确率为88%。本研究不仅为移动通信运营商提供了有效的客户满意度提升策略,也为后续的业务决策提供了数据支持,具有重要的理论和实践意义。
" ["cover"]=> array(3) { ["large"]=> string(75) "http://www.chinadatacase.com/files/course/2025/03-20/1056502d6813603518.jpg" ["middle"]=> string(75) "http://www.chinadatacase.com/files/course/2025/03-20/1056502d7b58266345.jpg" ["small"]=> string(75) "http://www.chinadatacase.com/files/course/2025/03-20/1056502d816f405136.jpg" } ["status"]=> string(9) "published" ["studentNum"]=> string(3) "116" ["discountType"]=> string(8) "discount" ["discount"]=> string(2) "10" ["minCoursePrice"]=> string(4) "0.00" ["maxCoursePrice"]=> string(4) "0.00" ["defaultCourseId"]=> string(4) "2204" ["productId"]=> string(4) "2077" ["goodsId"]=> string(4) "2076" ["minCoursePrice2"]=> array(2) { ["currency"]=> string(3) "RMB" ["amount"]=> string(4) "0.00" } ["maxCoursePrice2"]=> array(2) { ["currency"]=> string(3) "RMB" ["amount"]=> string(4) "0.00" } } } ["extensions"]=> array(3) { [0]=> string(8) "teachers" [1]=> string(14) "recommendGoods" [2]=> string(10) "isFavorite" } ["specs"]=> array(1) { [0]=> array(26) { ["id"]=> string(4) "2103" ["goodsId"]=> string(4) "2076" ["targetId"]=> string(4) "2204" ["title"]=> string(0) "" ["seq"]=> string(1) "1" ["status"]=> string(9) "published" ["price"]=> string(4) "0.00" ["coinPrice"]=> string(4) "0.00" ["usageMode"]=> string(7) "forever" ["usageDays"]=> string(1) "0" ["usageStartTime"]=> string(1) "0" ["usageEndTime"]=> string(1) "0" ["buyableStartTime"]=> string(1) "0" ["buyableEndTime"]=> string(1) "0" ["buyableMode"]=> NULL ["buyable"]=> string(1) "1" ["maxJoinNum"]=> string(1) "0" ["services"]=> array(0) { } ["priceObj"]=> array(2) { ["currency"]=> string(3) "RMB" ["amount"]=> string(4) "0.00" } ["displayPrice"]=> string(4) "0.00" ["displayPriceObj"]=> array(2) { ["currency"]=> string(3) "RMB" ["amount"]=> string(4) "0.00" } ["isMember"]=> bool(false) ["access"]=> array(2) { ["code"]=> string(14) "user.not_login" ["msg"]=> string(15) "用户未登录" } ["hasCertificate"]=> bool(false) ["learnUrl"]=> string(43) "http://www.chinadatacase.com/my/course/2204" ["teachers"]=> array(1) { [0]=> array(6) { ["id"]=> string(1) "3" ["nickname"]=> string(5) "admin" ["title"]=> string(1) " " ["uuid"]=> string(40) "634d3b58166bfafd4069119be97ee6bfee064c52" ["destroyed"]=> string(1) "0" ["avatar"]=> array(3) { ["small"]=> string(75) "http://www.chinadatacase.com/files/user/otherform/1711697442_1722994936.png" ["middle"]=> string(75) "http://www.chinadatacase.com/files/user/otherform/1711697442_1722994936.png" ["large"]=> string(75) "http://www.chinadatacase.com/files/user/otherform/1711697442_1722994936.png" } } } } } }