array(35) { ["id"]=> string(4) "2113" ["type"]=> string(6) "course" ["title"]=> string(64) "基于 LDA 和 DTM 模型的金融业风险识别和演化研究" ["subtitle"]=> string(0) "" ["creator"]=> array(6) { ["id"]=> string(1) "3" ["nickname"]=> string(5) "admin" ["title"]=> string(1) " " ["uuid"]=> string(40) "634d3b58166bfafd4069119be97ee6bfee064c52" ["destroyed"]=> string(1) "0" ["avatar"]=> array(3) { ["small"]=> string(75) "http://www.chinadatacase.com/files/user/otherform/1711697442_1722994936.png" ["middle"]=> string(75) "http://www.chinadatacase.com/files/user/otherform/1711697442_1722994936.png" ["large"]=> string(75) "http://www.chinadatacase.com/files/user/otherform/1711697442_1722994936.png" } } ["showable"]=> string(1) "1" ["buyable"]=> string(1) "1" ["summary"]=> string(423) "
随着互联网和 NLP 的迅猛发展,如何从大量的文本信息中挖掘有价值的信息成为一个热点话题。案例引入文本挖掘方法中的 LDA 和 DTM 模型,并应用于经过风险关键词筛选后的年报风险信息,分别探究了2001-2012、 2013-2016、 2017-2020 以及2021-2023 这四个时间段的金融风险类别及风险点的结果,并进一步分析其演化趋势。
" ["minPrice"]=> string(4) "0.00" ["maxPrice"]=> string(4) "0.00" ["discountId"]=> string(1) "0" ["images"]=> array(3) { ["large"]=> string(76) "http://www.chinadatacase.com/files/course/2025/03-20/14520999ee15511931.jpeg" ["middle"]=> string(76) "http://www.chinadatacase.com/files/course/2025/03-20/14520999f98e473179.jpeg" ["small"]=> string(76) "http://www.chinadatacase.com/files/course/2025/03-20/14520999ffd9227703.jpeg" } ["ratingNum"]=> string(1) "0" ["rating"]=> string(1) "0" ["hitNum"]=> string(3) "250" ["hotSeq"]=> string(1) "0" ["maxPriceObj"]=> array(2) { ["currency"]=> string(3) "RMB" ["amount"]=> string(4) "0.00" } ["minPriceObj"]=> array(2) { ["currency"]=> string(3) "RMB" ["amount"]=> string(4) "0.00" } ["minDisplayPrice"]=> string(4) "0.00" ["maxDisplayPrice"]=> string(4) "0.00" ["minDisplayPriceObj"]=> array(2) { ["currency"]=> string(3) "RMB" ["amount"]=> string(4) "0.00" } ["maxDisplayPriceObj"]=> array(2) { ["currency"]=> string(3) "RMB" ["amount"]=> string(4) "0.00" } ["canManage"]=> bool(false) ["peopleShowNum"]=> string(3) "108" ["isMember"]=> bool(false) ["status"]=> string(7) "created" ["orgId"]=> string(1) "1" ["orgCode"]=> string(2) "1." ["recommendWeight"]=> string(1) "0" ["recommendedTime"]=> string(1) "0" ["createdTime"]=> string(25) "2025-01-13T17:24:59+08:00" ["updatedTime"]=> string(25) "2025-12-11T10:04:33+08:00" ["product"]=> array(7) { ["id"]=> string(4) "2114" ["targetType"]=> string(6) "course" ["title"]=> string(64) "基于 LDA 和 DTM 模型的金融业风险识别和演化研究" ["owner"]=> string(1) "3" ["createdTime"]=> string(10) "1736760299" ["updatedTime"]=> string(10) "1742453552" ["target"]=> array(17) { ["id"]=> string(4) "2235" ["type"]=> string(6) "normal" ["title"]=> string(64) "基于 LDA 和 DTM 模型的金融业风险识别和演化研究" ["subtitle"]=> string(0) "" ["summary"]=> string(423) "随着互联网和 NLP 的迅猛发展,如何从大量的文本信息中挖掘有价值的信息成为一个热点话题。案例引入文本挖掘方法中的 LDA 和 DTM 模型,并应用于经过风险关键词筛选后的年报风险信息,分别探究了2001-2012、 2013-2016、 2017-2020 以及2021-2023 这四个时间段的金融风险类别及风险点的结果,并进一步分析其演化趋势。
" ["cover"]=> array(3) { ["large"]=> string(76) "http://www.chinadatacase.com/files/course/2025/03-20/14520999ee15511931.jpeg" ["middle"]=> string(76) "http://www.chinadatacase.com/files/course/2025/03-20/14520999f98e473179.jpeg" ["small"]=> string(76) "http://www.chinadatacase.com/files/course/2025/03-20/14520999ffd9227703.jpeg" } ["status"]=> string(9) "published" ["studentNum"]=> string(3) "108" ["discountType"]=> string(8) "discount" ["discount"]=> string(2) "10" ["minCoursePrice"]=> string(4) "0.00" ["maxCoursePrice"]=> string(4) "0.00" ["defaultCourseId"]=> string(4) "2241" ["productId"]=> string(4) "2114" ["goodsId"]=> string(4) "2113" ["minCoursePrice2"]=> array(2) { ["currency"]=> string(3) "RMB" ["amount"]=> string(4) "0.00" } ["maxCoursePrice2"]=> array(2) { ["currency"]=> string(3) "RMB" ["amount"]=> string(4) "0.00" } } } ["extensions"]=> array(3) { [0]=> string(8) "teachers" [1]=> string(14) "recommendGoods" [2]=> string(10) "isFavorite" } ["specs"]=> array(1) { [0]=> array(26) { ["id"]=> string(4) "2140" ["goodsId"]=> string(4) "2113" ["targetId"]=> string(4) "2241" ["title"]=> string(0) "" ["seq"]=> string(1) "1" ["status"]=> string(9) "published" ["price"]=> string(4) "0.00" ["coinPrice"]=> string(4) "0.00" ["usageMode"]=> string(7) "forever" ["usageDays"]=> string(1) "0" ["usageStartTime"]=> string(1) "0" ["usageEndTime"]=> string(1) "0" ["buyableStartTime"]=> string(1) "0" ["buyableEndTime"]=> string(1) "0" ["buyableMode"]=> NULL ["buyable"]=> string(1) "1" ["maxJoinNum"]=> string(1) "0" ["services"]=> array(0) { } ["priceObj"]=> array(2) { ["currency"]=> string(3) "RMB" ["amount"]=> string(4) "0.00" } ["displayPrice"]=> string(4) "0.00" ["displayPriceObj"]=> array(2) { ["currency"]=> string(3) "RMB" ["amount"]=> string(4) "0.00" } ["isMember"]=> bool(false) ["access"]=> array(2) { ["code"]=> string(14) "user.not_login" ["msg"]=> string(15) "用户未登录" } ["hasCertificate"]=> bool(false) ["learnUrl"]=> string(43) "http://www.chinadatacase.com/my/course/2241" ["teachers"]=> array(1) { [0]=> array(6) { ["id"]=> string(1) "3" ["nickname"]=> string(5) "admin" ["title"]=> string(1) " " ["uuid"]=> string(40) "634d3b58166bfafd4069119be97ee6bfee064c52" ["destroyed"]=> string(1) "0" ["avatar"]=> array(3) { ["small"]=> string(75) "http://www.chinadatacase.com/files/user/otherform/1711697442_1722994936.png" ["middle"]=> string(75) "http://www.chinadatacase.com/files/user/otherform/1711697442_1722994936.png" ["large"]=> string(75) "http://www.chinadatacase.com/files/user/otherform/1711697442_1722994936.png" } } } } } }