array(35) { ["id"]=> string(3) "203" ["type"]=> string(6) "course" ["title"]=> string(84) "商业银行贷款违约风险识别——基于客户特征的多模型投票机制" ["subtitle"]=> string(0) "" ["creator"]=> array(6) { ["id"]=> string(1) "8" ["nickname"]=> string(7) "mingzhu" ["title"]=> string(6) "教师" ["uuid"]=> string(40) "66f930e6f2d349b45f48f24e125e05d3a92fb8d1" ["destroyed"]=> string(1) "0" ["avatar"]=> array(3) { ["small"]=> string(76) "http://www.chinadatacase.com/files/default/2021/11-26/09105602405b816729.png" ["middle"]=> string(76) "http://www.chinadatacase.com/files/default/2021/11-26/091056023132077454.png" ["large"]=> string(76) "http://www.chinadatacase.com/files/default/2021/11-26/0910560220f8152273.png" } } ["showable"]=> string(1) "1" ["buyable"]=> string(1) "1" ["summary"]=> string(1008) "

作者:     葛新杰、刘松涛、许白雪
关键词:     贷款风险识别、Logistic、随机森林
发表日期:     2021
单位:     安徽大学
贷款违约风险评估始终是商业银行风险管理的重要内容。本案例借助Univ.AI的银行客户贷款历史数据,基于Logistic原理研究商业银行贷款违约风险的影响因素,对比分析Logistic、高斯朴素贝叶斯、随机森林等五种算法对训练集和测试集的风险识别效果,并使用网格交叉验证函数GridSearchCV求解超参数。研究发现,一是年龄、所在地和资产状况在1%的置信水平下,对贷款是否违约具有显著影响;二是随机森林的预测结果明显优于其他四种,在代入最优超参数后,对训练集的预测正确率为0.94,对测试集的预测正确率为0.83。最后根据特征向量的各分量绘制了变量重要性直方图,以判断个人信息对贷款违约的贡献程度。

" ["minPrice"]=> string(4) "0.00" ["maxPrice"]=> string(4) "0.00" ["discountId"]=> string(1) "0" ["images"]=> array(3) { ["large"]=> string(75) "http://www.chinadatacase.com/files/course/2023/05-05/1142124651d1220008.png" ["middle"]=> string(75) "http://www.chinadatacase.com/files/course/2023/05-05/11421246c5fd213442.png" ["small"]=> string(75) "http://www.chinadatacase.com/files/course/2023/05-05/11421246d8f3482353.png" } ["ratingNum"]=> string(1) "0" ["rating"]=> string(1) "0" ["hitNum"]=> string(3) "641" ["hotSeq"]=> string(1) "0" ["maxPriceObj"]=> array(2) { ["currency"]=> string(3) "RMB" ["amount"]=> string(4) "0.00" } ["minPriceObj"]=> array(2) { ["currency"]=> string(3) "RMB" ["amount"]=> string(4) "0.00" } ["minDisplayPrice"]=> string(4) "0.00" ["maxDisplayPrice"]=> string(4) "0.00" ["minDisplayPriceObj"]=> array(2) { ["currency"]=> string(3) "RMB" ["amount"]=> string(4) "0.00" } ["maxDisplayPriceObj"]=> array(2) { ["currency"]=> string(3) "RMB" ["amount"]=> string(4) "0.00" } ["canManage"]=> bool(false) ["peopleShowNum"]=> string(3) "119" ["isMember"]=> bool(false) ["status"]=> string(9) "published" ["orgId"]=> string(1) "1" ["orgCode"]=> string(2) "1." ["recommendWeight"]=> string(1) "0" ["recommendedTime"]=> string(1) "0" ["createdTime"]=> string(25) "2022-03-03T09:15:59+08:00" ["updatedTime"]=> string(25) "2025-12-11T09:33:09+08:00" ["product"]=> array(7) { ["id"]=> string(3) "203" ["targetType"]=> string(6) "course" ["title"]=> string(84) "商业银行贷款违约风险识别——基于客户特征的多模型投票机制" ["owner"]=> string(1) "8" ["createdTime"]=> string(10) "1646270159" ["updatedTime"]=> string(10) "1743643593" ["target"]=> array(17) { ["id"]=> string(3) "237" ["type"]=> string(6) "normal" ["title"]=> string(84) "商业银行贷款违约风险识别——基于客户特征的多模型投票机制" ["subtitle"]=> string(0) "" ["summary"]=> string(1008) "

作者:     葛新杰、刘松涛、许白雪
关键词:     贷款风险识别、Logistic、随机森林
发表日期:     2021
单位:     安徽大学
贷款违约风险评估始终是商业银行风险管理的重要内容。本案例借助Univ.AI的银行客户贷款历史数据,基于Logistic原理研究商业银行贷款违约风险的影响因素,对比分析Logistic、高斯朴素贝叶斯、随机森林等五种算法对训练集和测试集的风险识别效果,并使用网格交叉验证函数GridSearchCV求解超参数。研究发现,一是年龄、所在地和资产状况在1%的置信水平下,对贷款是否违约具有显著影响;二是随机森林的预测结果明显优于其他四种,在代入最优超参数后,对训练集的预测正确率为0.94,对测试集的预测正确率为0.83。最后根据特征向量的各分量绘制了变量重要性直方图,以判断个人信息对贷款违约的贡献程度。

" ["cover"]=> array(3) { ["large"]=> string(75) "http://www.chinadatacase.com/files/course/2023/05-05/1142124651d1220008.png" ["middle"]=> string(75) "http://www.chinadatacase.com/files/course/2023/05-05/11421246c5fd213442.png" ["small"]=> string(75) "http://www.chinadatacase.com/files/course/2023/05-05/11421246d8f3482353.png" } ["status"]=> string(9) "published" ["studentNum"]=> string(3) "119" ["discountType"]=> string(8) "discount" ["discount"]=> string(2) "10" ["minCoursePrice"]=> string(4) "0.00" ["maxCoursePrice"]=> string(4) "0.00" ["defaultCourseId"]=> string(3) "237" ["productId"]=> string(3) "203" ["goodsId"]=> string(3) "203" ["minCoursePrice2"]=> array(2) { ["currency"]=> string(3) "RMB" ["amount"]=> string(4) "0.00" } ["maxCoursePrice2"]=> array(2) { ["currency"]=> string(3) "RMB" ["amount"]=> string(4) "0.00" } } } ["extensions"]=> array(3) { [0]=> string(8) "teachers" [1]=> string(14) "recommendGoods" [2]=> string(10) "isFavorite" } ["specs"]=> array(1) { [0]=> array(26) { ["id"]=> string(3) "203" ["goodsId"]=> string(3) "203" ["targetId"]=> string(3) "237" ["title"]=> string(0) "" ["seq"]=> string(1) "1" ["status"]=> string(9) "published" ["price"]=> string(4) "0.00" ["coinPrice"]=> string(4) "0.00" ["usageMode"]=> string(7) "forever" ["usageDays"]=> string(1) "0" ["usageStartTime"]=> string(1) "0" ["usageEndTime"]=> string(1) "0" ["buyableStartTime"]=> string(1) "0" ["buyableEndTime"]=> string(1) "0" ["buyableMode"]=> NULL ["buyable"]=> string(1) "1" ["maxJoinNum"]=> string(1) "0" ["services"]=> array(0) { } ["priceObj"]=> array(2) { ["currency"]=> string(3) "RMB" ["amount"]=> string(4) "0.00" } ["displayPrice"]=> string(4) "0.00" ["displayPriceObj"]=> array(2) { ["currency"]=> string(3) "RMB" ["amount"]=> string(4) "0.00" } ["isMember"]=> bool(false) ["access"]=> array(2) { ["code"]=> string(14) "user.not_login" ["msg"]=> string(15) "用户未登录" } ["hasCertificate"]=> bool(false) ["learnUrl"]=> string(42) "http://www.chinadatacase.com/my/course/237" ["teachers"]=> array(1) { [0]=> array(6) { ["id"]=> string(4) "1037" ["nickname"]=> string(9) "葛新杰" ["title"]=> string(0) "" ["uuid"]=> string(40) "5859626acb442d184d234a03ba8dc335ba07e2fa" ["destroyed"]=> string(1) "0" ["avatar"]=> array(3) { ["small"]=> string(58) "http://www.chinadatacase.com/assets/img/default/avatar.png" ["middle"]=> string(58) "http://www.chinadatacase.com/assets/img/default/avatar.png" ["large"]=> string(58) "http://www.chinadatacase.com/assets/img/default/avatar.png" } } } } } } 商业银行贷款违约风险识别——基于客户特征的多模型投票机制 - 中国经管实验教学案例平台